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Abstract. The dielectric response of the relaxor ferroelectric PbMg1/3Nb2/3O3 (PMN) is found
to be a non-analytical function of the ac field, with the absolute value of the non-linear component
of the polarization given by|Pnl | ∝ E

γ(ω,T )
m . The dependence on the temperature,T , and

frequency,ω, of the exponentγ manifests itself in the form of a crossover inγ (T ) from
approximately 2 to 3 upon cooling, whose position depends upon the frequency of the applied ac
field. From the comparison ofγ (ω, T ) with the linear complex dielectric permittivity,ε∗l (ω, T ),
of PMN, the following can be correlated: (i)γ ≈ 2 in the regime of the quasi-static response,
and γ starts deviating from 2 simultaneously with the onset of the frequency dispersion; and
(ii) γ ≈ 3 when the spectrum of relaxation times in PMN becomes flat. These findings can
be understood in terms of the change in the type of the motion of the interphase boundaries of
the microscopic polar regions existing in PMN, namely in the change of the scale on which the
interphase boundaries can move.

1. Introduction

In the contemporary physics of relaxor ferroelectrics (relaxors), there are several key
problems which still remain open and challenge both experimentalists and theoreticians.
One of these problems is that of the nature of the dielectric response of relaxors, and,
primarily, that of their ‘classical’ representative—PbMg1/3Nb2/3O3 (PMN).

In fact, the name ‘relaxor’ identifies the most characteristic feature of these materials:
a relaxation dispersion of the linear dielectric permittivity. The dispersion is observed over
a wide frequency interval, from millihertz to gigahertz [1]. This is distinct from the simple
Debye relaxation which is present only over 2.3 decades in frequency. Owing to detailed
experimental studies of the linear dielectric response of PMN, its relaxation dispersion
has recently received a clear interpretation on the phenomenological level [2–4]. It was
shown that there exists an exponentially broad and smooth spectrum of relaxation times,τ ,
which changes with temperature and controls the frequency dependence of the real,ε′l , and
imaginary,ε′′l , parts of the linear dielectric permittivity.

At the same time, on the microscopic level, the understanding of the relaxation dispersion
in PMN is yet to be developed. Although it is commonly believed that the dielectric response
of PMN is related to small—about 10 nm in size—polar regions which are randomly
distributed in a non-polar matrix [5], it is still not clear how the polar regions respond
to applied electric fields. Several possible models have been proposed, which with certain
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assumptions could equally well describe the frequency dispersion of the linear permittivity.
They are:

(a) a superparaelectric [6, 7];
(b) a dipolar glass [2, 8, 9];
(c) a dipolar dielectric with random fields [10–12];
(d) a domain wall or interphase boundary motion [13–15]; and
(e) the model which comprises the approaches (c) and (d) invoked according to the

temperature interval discussed [16].

In this situation, additional experimental evidence is required in order to distinguish among
models (a)–(e).

In previous work, we showed that such evidence could be obtained from the systematic
study of non-linear dielectric properties of PMN [14, 17–20]. It was shown that a set of
experimental data, which included an increase in the real part of the dielectric permittivity
with increasing ac-field amplitude [14], and a large qualitative difference between the
effects of the dc bias and ac driving fields on the dielectric permittivity of PMN single
crystals [17–19], provide several arguments against models (a)–(c) and (e), and, at the
same time, in favour of model (d). Thus, at present, the scenario in which the ac-field-
induced displacements of the boundaries of the polar regions (rather than a reorientation of
the regions) controls the dielectric response looks rather convincing for PMN. Following
Cross [21], we will call this mechanism of the dielectric response a ‘breathing’ mechanism,
because the motion of the interphase boundary between the polar regions and the non-polar
matrix looks like breathing of the polar regions under the applied ac field.

It is the purpose of this paper to continue our study of the non-linear dielectric response
of PMN and to report the experimental data which, on one hand, look rather surprising
and, on the other hand, lend additional support to the ‘breathing’ model. We investigate
the non-linear response to the ac field by measuring the dielectric permittivity and the
third-harmonic component of the induced polarization of PMN. The analysis of the field
dependence of both quantities leads to the conclusion that at small ac-field amplitudes,
down to 0.04 kV cm−1, the non-linear polarization,Pnl (defined as the difference between
the total induced polarization,P , and its linear component:Pnl = P − ε0ε

′
lEm, where

ε0 = 8.854× 10−12 F m−1), is a non-analytical function of the field. We find that its
absolute value is given by the following relationship:

|Pnl| ∝ Eγ(ω,T )m (1)

where the exponentγ is temperature and frequency dependent. As a function of temperature
γ exhibits a crossover, changing fromγ ≈ 2 at high temperatures toγ ≈ 3 at low
temperatures. The position of the crossover depends upon the frequency,ω, of the applied
ac field, and can be correlated with the frequency dispersion of the linear dielectric response:

(i) γ ≈ 2 in the regime of the quasi-static response, and, upon cooling,γ starts deviating
from 2 simultaneously with the onset of the frequency dispersion ofε′l ;

(ii) with increasing temperature, the deviation ofγ from its low-temperature limit occurs
simultaneously with the appearance of the frequency dispersion of the imaginary part of the
permittivity, ε′′l .

The theoretical part of the discussion of the experimental results has two sections. First, we
will compare the data for PMN with the known examples of non-analytical behaviour of
the non-linear response in disordered systems [22, 23], which have already received a solid
theoretical interpretation. From this comparison, it will become clear that PMN is a unique
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example, which does not fit the existing models of non-analytical behaviour [22, 23], and
thus requires a new approach for describing the field dependence of its non-linear response.
Therefore, in the second section we will discuss the data reported in this paper within the
‘breathing’ model. Even though this model is comparatively new, recently it has already
been successful in explaining some other features of the non-linear dielectric response of
PMN [14, 17–20]. It will be shown that, within this model, the observed crossover in the
field exponentγ (ω, T ) may imply a change in the type of the interphase boundary motion.

Figure 1. The temperature and frequency dependence of: (a) the non-linear part of the dielectric
permittivity, 1ε′∼ = ε′(Em) − ε′l , measured atEm = 0.1 kV cm−1; (b) the absolute value of
the third-harmonic component of the polarization,P3, measured atEm = 0.04 kV cm−1; and
(c) the linear dielectric permittivity,ε′l , of PMN single crystal.

2. Experimental procedure

The experiments were performed on PMN single crystal, in which case the electric field
was applied along a〈111〉 direction, and ceramic samples. The typical sample dimensions
were about 3× 3× 0.1 mm3. The third harmonic of the polarization,P3, was measured
using a SR 830 digital lock-in amplifier. The frequency range was from 1 Hz to 10 kHz,
and the ac-field amplitude,Em, varied from 0.04 kV cm−1 to 0.20 kV cm−1. The dielectric
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permittivity, ε′, was measured using an HP 4284A LCR meter. The amplitude of the ac
field changed from 0.02 kV cm−1 to 2.0 kV cm−1, and the frequency interval investigated
was from 20 Hz to 10 kHz. The non-linear effect was characterized by the non-linear
component of the dielectric permittivity,1ε′∼, which was calculated as the difference
between the permittivity measured at a given amplitude,Em, and the linear permittivity,ε′l ,
corresponding toEm = 0.02 kV cm−1:

1ε′∼ = ε′(Em)− ε′l .
Both experiments were performed as functions of temperature, always upon cooling from
380 K to 180 K. This special study showed that there were no effects of the cooling rate on
non-linear dielectric data for the rates within 0.4 to 2 K min−1. In this paper, we report the
data which were obtained using the cooling rates of 1 K min−1 for ε′ and of 0.5 K min−1

for P3. For all of the samples, we used Cr/Au electrodes deposited by evaporation.

3. Results

In figures 1(a) and 1(b), we plot typical data for1ε′∼ and the absolute value ofP3,
respectively, measured at a fixed ac-field amplitude. These plots clearly demonstrate that,
like the linear dielectric permittivity (figure 1(c)), the non-linear components of the response
have two regimes: quasi-static (at high temperatures) and frequency dispersive (at low
temperatures), and that for a given frequency of the applied field, the transition from the
non-dispersive to the dispersive regime occurs simultaneously in the linear,ε′l , and non-
linear,1ε′∼ andP3, dielectric responses.

Figure 2. The plot shows that the ratio between the amplitude of the third harmonic of the
polarization and the cube of the ac-field amplitude,P3/E

3
m, strongly depends upon the applied

electric field even at field levels as small as 0.04 kV cm−1. The symbols show the experimental
data for a single crystal of〈111〉 orientation measured at 10 Hz at three temperatures, and the
solid lines are drawn to guide the eye.

In this work, we focused on the analysis of the field dependences of1ε′∼ andP3. The
analysis showed that, at temperatures above approximately 240 K, the non-linear components
of the dielectric response strongly deviate from the1ε′∼ ∝ E2

m andP3 ∝ E3
m functions which

are predicted by the simple phenomenological scheme based on the symmetry considerations
(see the more detailed discussion in the next section). This is evident, for example, from
figure 2, where one can see that the ratioP3/E

3
m exhibits substantial field dependence,
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even at a field as small as 0.04 kV cm−1. Moreover, we could not fit the measured
dependenceP3(Em) to a polynomial function containing only odd powers of the field (which
is consistent with the macroscopic symmetry of PMN—cubic, with them3m point group
[5, 24, 25] unless an unreasonably large number, from 5 to 8, of terms were taken into
account. A similar problem was encountered when we tried to fit1ε′∼ to a polynomial
function containing only even powers of the field.

Figure 3. The data for the electric field dependence of the absolute value of the third harmonic,
P3, of PMN (symbols) and their fits to the power function|P3| ∝ Eγm, shown with the solid
lines. The sample is a single crystal of〈111〉 orientation, and the frequency of the ac field is
10 Hz. The markers on the right indicate the positions of the pointP3 = 10−7 C m−2 for each
temperature.

Trying to choose an appropriate function for describing the field dependence of1ε′∼ and
P3, we found that the data can be nicely fitted to a power law. For example, figure 3 shows a
plot of the absolute value ofP3 as a function of the ac-field amplitude for PMN single crystal.
First, one can see here that, plotted on a log–log scale, the data lie well on the straight line,
implying a power-type dependence. In the plot, the solid lines correspond to a fit to the
power function|P3| ∝ Eγm, usingγ as an adjustable parameter. Second, one can clearly see
the difference between the exponentsγ at the lowest and highest temperatures, as represented
by the slopes of the straight lines. For the whole temperature interval investigated, the
temperature dependence of the exponentγ is plotted in figure 4(a) for two frequencies
of the applied ac field, 10 Hz and 1 kHz. The plot demonstrates that, as a function of
temperature,γ undergoes a step-like change: at high temperatures,γ = 2.00± 0.05 with
a good accuracy, while at low temperatures, it is close to 3 (γ = 2.75± 0.05). Also, the
position of the ‘step’ depends upon the frequency,ω, of the ac field, shifting toward higher
temperatures with increasingω.

Similar analysis using the power function can be performed for the amplitude
dependence of the non-linear component of the dielectric permittivity. Figure 5(a) shows
1ε′∼ for a PMN single crystal as a function ofEm plotted on a log–log scale, where the
symbols correspond to the experimental data obtained at 1 kHz at two temperatures, and
the solid lines show their fits to the power function1ε′∼ ∝ Eξm. The exponentξ obtained
from the fit is plotted in figure 5(b) as a function of temperature, and, likeγ (T ), it exhibits
a step-like change. For the same frequency, 1 kHz, the position of the ‘step’ inξ(T ) almost
coincides with that inγ (T ) obtained from the third harmonic. Also, the comparison of
the plots in figures 4(a) and 5(b) shows that, for the same frequency, these exponents are
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Figure 4. (a) The temperature dependence of the exponentγ corresponding to the fit of the data
for P3(Em) for a PMN single crystal to a power function, for two frequencies of the ac field:
10 Hz and 1 kHz (in the plot, the lines are drawn to guide the eye). (b) The temperature and
frequency dependence of the real,ε′l , and imaginary,ε′′l , parts of the linear dielectric permittivity
of the same PMN single crystal (dashed line: 100 Hz; solid line: 1 kHz; dotted line: 10 kHz).
One can see that for the same frequency of the ac field, 1 kHz, the following are correlated:
(i) γ = 2 in the regime of the quasi-static response, whereε′l = εs andε′′l ≈ 0, andγ starts to
deviate from 2 simultaneously with the onset of the frequency dispersion (shown by the box);
(ii) γ ≈ 3 whenε′′l becomes nearly frequency independent atω > 1 kHz (shown by the cross).

related byγ −ξ = 0.85; their difference is in reasonable agreement with the expected value
of 1 [26].

For the power-type dependence, a comparative analysis of the data for the field
exponents,γ (ω, T ) and ξ(T ), with those for the linear dielectric permittivity,ε′l and ε′′l ,
for the same PMN single crystal enables us to correlate several events. We demonstrate
them by plotting in figure 4(b) the data forε′l andε′′l . For a given frequency of the applied
ac field, the quadratic field dependence of the third harmonic,γ = 2, is observed in the
regime of the quasi-static response, and, upon cooling, the temperature at whichγ (ω, T )

starts to grow from 2 coincides with the onset of the frequency dispersion ofε′l (the box
in figure 4(b) for 1 kHz). At the same time, for a givenω, the transition to the nearly
cubic field dependence ofP3 occurs simultaneously with the event ofε′′l becoming nearly
independent of the frequency at frequencies higher thanω (the temperature corresponding
to this event is marked with the cross in figure 4(b) for 1 kHz).

Thus, there are two ways to describe the non-linear dielectric data for PMN: using either
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Figure 5. (a) The electric field dependence of the non-linear component,1ε′∼ = ε′(Em) − ε′l ,
of the dielectric permittivity of a PMN single crystal measured at 1 kHz, and its fit to the power
function,1ε′∼ ∝ Eξm, which is shown by the solid lines. (b) The temperature dependence of the
exponentξ corresponding to the frequency of the ac field of 1 kHz.

the polynomial expansion or the power function with the field exponentsγ andξ different
from the values predicted by the symmetry of the crystal (as has already been mentioned,
for the macroscopically centrosymmetrical crystal of PMN, the expected values are equal
to γ = 3 and ξ = 2). For the power function, the similarity of the behaviours of the
exponentsγ and ξ which correspond to two different characteristics,P3 and1ε′∼, of the
non-linear dielectric response leads us to suggest that the absolute value of the non-linear
component of the polarization of the sample,Pnl , should change according to equation (1):
|Pnl| ∝ Eγm, where the exponentγ is temperature and frequency dependent. Equation (1) is a
non-analytical function at the pointE = 0, which actually implies non-analytical behaviour
of the induced polarization,P(E), in PMN in the limit of very small fields,E → 0. In
the following part of this paper, we are going to work only with this function. The reason
for this is that a similar type of non-analytical field dependence, with the field exponents
different from the values corresponding to the symmetry of the material, has been observed
previously for some disordered systems; see, e.g., references [22, 23]. Therefore, since
PMN is also a disordered material [1, 2, 6, 13], it seems both interesting and physically
reasonable to investigate the possibility of it having a non-analytical dielectric response.

Before concluding this section, we will pay special attention to the behaviour of the
dielectric non-linearity of PMN in the quasi-static regime. Here, the third harmonic,



8870 A E Glazounov and A K Tagantsev

Figure 6. The absolute value of the third harmonic of the polarization of PMN ceramics is
plotted as a function of the ac-field amplitude on a log–log scale. The symbols correspond to
the experimental data for different sample thicknesses, and the solid lines show a fit to the power
function |P3| ∝ Eγm. The temperature is 280 K and the frequency of the ac field is 10 Hz.

P3, changed quadratically, and1ε′∼ changed almost linearly with the field. Taking into
account the fact that the magnitude of the non-linear effect is fairly small—for example
1ε′∼/ε

′
l 6 10−2 at 300 K forEm 6 1 kV cm−1 (cf. figures 5(a) and 1(c))—such behaviour

is very unusual for a macroscopically centrosymmetrical crystal of PMN, for which it is
expected that the induced polarization should contain only odd powers of the electric field.
It looks suspiciously close to the non-linear response of a ‘non-centrosymmetrical’ object,
like an electrically asymmetric surface layer of the sample. Thus, in order to eliminate
this possibility, and to be sure that we are dealing with ‘true’ bulk properties of PMN
and not with surface-related effects, we performed an additional experiment and carried
out device modelling. The sample was considered as consisting of two dielectric layers:
one layer represents the bulk properties of the material, and the second layer, whose non-
linear response behaves asE2

m, represents the near-surface part of the sample. A detailed
analysis of this problem is presented in the appendix. It shows that if the non-linear
response of the sample is controlled by a surface layer, the third harmonic of the polarization
should be inversely proportional to the thickness of the sample,hs , and change as follows:
P3 ∝ E2

m/hs . In order to investigateP3(Em) as a function of the sample thickness, PMN
ceramic samples were used. The result of this study is demonstrated in figure 6, where
one can see that even thoughhs varies by a factor of 4, the measured values of the third
harmonic almost coincide for all of the samples, and that they all show a nearly quadratic
field dependence (the value ofγ corresponding to each sample thickness is given in the
caption to the plot). This gives us enough confidence that the measured components,P3

and1ε′∼ (and thereforePnl), represent true material properties of PMN.

4. Discussion

4.1. Crossover in the field exponent versus evolution of the relaxation time spectrum

The correlation indicated between the beginning and the end of the temperature crossover
of the field exponentγ (equation (1)), and the onset of the frequency dispersion of the real
and imaginary parts of the linear dielectric permittivity,ε′l andε′′l (figure 4), lets us relate
this crossover to the evolution of the relaxation time spectrum. We take advantage of the
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fact that in relaxors the spectrumG(ln τ, T ) of relaxation timesτ is broad and smooth [4],
which allows us to write down the following expressions forε′l andε′′l for a relaxor [27]:

ε′l(ω, T ) = εs(T )
∫ τ=1/ω

τ=0
G(ln τ, T ) d(ln τ) (2)

ε′′l (ω, T ) =
π

2
εs(T )G(lnω

−1, T ) (3)

where the spectrum has a normalizing condition:∫ τ=∞

τ=0
G(ln τ, T ) d(ln τ) = 1

andεs is the linear static permittivity. We note that these expressions are for the contribution
of the ‘relaxor’ degrees of freedom to the dielectric response. They give a low-frequency
relaxation dispersion ofε′l and ε′′l typical of relaxors, at frequencies below the gigahertz
range. The lattice contribution is neglected in the discussion throughout the paper.

Figure 7. The correlation between the crossover in the field exponentsγ andξ of the non-linear
dielectric response of a relaxor and the temperature evolution of the relaxation time spectrum
G(ln τ, T ) which controls its linear dielectric response. A schematically shown relative position
of the spectrum and the reciprocal frequency, 1/ω, of the ac driving field: (a) for the quasi-static
regime; (c) for the regime in which the spectrum is perfectly flat; and (b) for an intermediate
regime in which (a) changes to (c) upon cooling. The values of the field exponentsγ and ξ
are indicated in the figures. These exponents control the field dependence of the third harmonic
of the polarization,|P3| ∝ E

γ
m, and the non-linear component of the dielectric permittivity,

1ε′∼ ∝ Eξm.

Using equations (2) and (3), one can distinguish three separate regimes of the dielectric
response, which are shown schematically in figure 7. If the spectrum is relatively narrow,
with the result that its maximum relaxation time,τmax , is smaller thanω−1, the quasi-
static regime is realized (figure 7(a)): from equations (2) and (3), one hasε′l = εs and
ε′′l = 0, respectively. This corresponds to the behaviour of PMN at high temperatures.
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With decreasingT , the spectrumG(ln τ, T ) broadens—that is,τmax increases. Whenτmax
becomes larger thanω−1, the frequency dispersion of bothε′l andε′′l appears (figure 7(b)).
Finally, at low temperatures, the spectrum becomes almost flat (figure 7(c)). According to
equations (2) and (3), this manifests itself in a logarithmic dependence [28] of the real part,
ε′l , and in a virtually frequency-independent [3, 29] imaginary part,ε′′l , of the permittivity.
From the data presented above, one can conclude that these three regimes correspond exactly
to the three regimes of the non-linear dielectric behaviour of PMN, which are also indicated
in figure 7. Thus we see that the crossover in the field exponentsγ and ξ is related to
the temperature evolution of the relaxation time spectrumG(ln τ, T ) when the edge of the
spectrumτmax passes by the period 1/ω of the ac driving field, the width of the crossover
being controlled by the smearing of this edge.

4.2. Non-analytical dielectric non-linearity in the quasi-static regime

As is seen from figures 4(a) and 5(b), at high temperatures in the quasi-static regime, the
non-linear component of the polarization is close to a quadratic function of the amplitude
of the ac field:

|Pnl| ∝ E2
m. (4)

However, for a macroscopically centrosymmetrical crystal such as PMN [5, 24], the
symmetry arguments require that the polarizationP should be a function of just the odd
powers of the fieldE. This means that in the quasi-static regime, a weak non-linear dielectric
effect can be described by the expansion

P = AE + BE3+ · · · (5)

in which the coefficientsA and B are independent ofE. Therefore, the difference
between the experimental fact, given by equation (4), and the phenomenological expansion,
equation (5), implies that at high temperature we are dealing with a non-analytical non-
linear dielectric behaviour of PMN. This behaviour persists down to the amplitudes of the
field Em = 0.04 kV cm−1 which is close to that used in standard small-signal dielectric
measurements.

Let us discuss a possible origin of this phenomenon. Recently, a similar dielectric
behaviour was reported by Lyonset al [22]. They observed that in disordered ferro-
electric KTa0.991Nb0.009O3 (KTN), the non-linear component of the polarization changed
quadratically with the field, i.e.,γ = 2, and they attributed this behaviour to a manifestation
of the Rayleigh-type dynamics of two-level systems. Later, the Rayleigh law was observed
for another ferroelectric material, lead zirconate titanate (PZT) [30, 31], for which it was
related to the domain wall motion in the media with randomly distributed pinning centres.
However, we argue that the interpretation in terms of the Rayleigh law cannot be applied
to the case of PMN, even though in the quasi-static regime we haveγ = 2 (figure 4(a)).
The main argument is that the Rayleigh law, given by [22]

P(E) = (ε0ε
′
l + νREm)E ± (νR/2)(E2

m − E2) (6)

(νR is a Rayleigh coefficient, and ‘+’ corresponds to increasing field and ‘−’ to decreasing
field), predicts that, forE(t) = Em sinωt , the higher harmonicsPk(t) of the polarization
should be in quadrature with the field, i.e.,Pk(t) ∝ sin(kωt + 90◦), as was observed for
KTN [22]. At the same time, in our experiments we observedP3(t) ∝ sin(3ωt + 180◦)
when we had the exponentγ = 2 in the quasi-static regime; cf. figure 8 and figure 4(a).
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Figure 8. The phase angleθ3 of the third harmonic of the polarization is defined from
P3(t) ∝ sin(3ωt + θ3) when the applied field isE ∝ sinωt . In the plot, the line shows
the data forθ3 for PMN at 10 Hz, at temperatures corresponding to the regime of the quasi-
static dielectric response. The open circles show the value ofθ3 = 90◦ corresponding to the
classical Rayleigh law, equation (6).

Table 1. Values calculated in terms of two models (represented by equations (6) and (7))
and measured experimentally for the following parameters: the exponentsγ and ξ which
control the field dependence of the absolute value of the third harmonic of the polarization,
|P3| ∝ Eγm, and the non-linear component of the dielectric permittivity,1ε′∼ ∝ Eξm; the phase
angleθ3 of the third harmonic defined fromP3(t) ∝ sin(3ωt + θ3) when the applied field is
E ∝ sinωt ; and the ratio1ε′∼ ε0Em/|P3|.

Rayleigh law Pnl ∝ ±E2
m Experiment (T = 280 K)

γ 2 2 2
ξ 1 1 1.2
θ3 90◦ 180◦ 180◦
1ε′∼ ε0Em/|P3| 15π/4≈ 12 5 18

The phase shift of 180◦ between the field and the third harmonic of the polarization
observed in our experiments suggested to us considering another non-analytical expression
for the polarization, namely

P = AE ± BE2
m (7)

where ‘+’ corresponds to increasing field and ‘−’ to decreasing field. One can easily
check that the dielectric response controlled by this expression possesses a field exponent
and a phase shift of the third harmonic which are both consistent with our observations
(table 1). However, we found that equation (7) most probably does not describe our data.
This conclusion was suggested by the comparison of the ratio1ε′∼ ε0Em/|P3| calculated
using equation (7) with that measured experimentally. According to equation (7), one has
1ε′∼ ε0Em/|P3| = 5, whereas the experiment gives1ε′∼ ε0Em/|P3| = 18± 0.5 (the data at
T = 280 K andω = 1 kHz). A more detailed comparison of the two models discussed
above, i.e. given by equations (6) and (7), and the experimental data is summarized in
table 1. One can see that even on the phenomenological level these models cannot describe
the non-analytical non-linearity of PMN.

Very recently, another type of non-analytical non-linear dielectric response has been
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reported for PZT by Mueller and Zhang [32]. It was observed thatPnl scaled as follows:

Pnl ∝
[
(E − Ec)/Ec

]ϕ
whereϕ ≈ 2.2 andEc has the meaning of a threshold field. The authors interpreted these
results in terms of the motion of randomly pinned domain walls. In their interpretation,
they used the results of a theoretical analysis of the problem of the charge-density-wave
(CDW) motion [33]. Concerning possible extension of this approach to a description of our
results, several remarks should be made. First, in the framework of the ‘breathing’ model,
in which the ac dielectric response is attributed to the field-induced vibrations of the polar
region boundaries, there could be a relationship between our results and those reported in
reference [32]. Second, being applied to the case of a quasi-static dielectric response in
PMN, this approach would imply that the threshold fieldEc should tend to zero when one
reaches the quasi-static regime upon heating. This is consistent with the disappearance of the
experimentally observed hysteresis loops inP(E) in this regime [1, 6]. Third, even though
the system of the charge-density wave, the results on which were employed in the discussion
in reference [32], has some common features with the problem of interface pinning, it is
very different from the latter. For example, the Hamiltonian studied in reference [33] cannot
be used directly for the problem of the dielectric response of a randomly pinned interface.
All in all, the origin of the non-analytical dielectric non-linearity in PMN might be related
to the origin of the non-linear current response in a CDW system. However, at present, the
theoretical results derived for the CDW can hardly be used for the interpretation of the data
obtained for PMN until an adequate theory for relaxors is developed.

4.3. ‘The breathing’ model and the crossover in the field exponent

It has already been indicated in the introduction that many features of the dielectric response
of PMN can be interpreted in the framework of the so-called ‘breathing’ model (d), and
that this model looks the most realistic among the various options. However, at present,
we are not aware of any exact theoretical result which could explain the crossover in the
field exponentsγ and ξ in this framework. Also, currently we are not able to develop
an adequate theory of the non-linear phenomena discussed. But we can show that in the
framework of the ‘breathing’ model a crossover of the dynamics of polar region boundaries
is expected, and that it can be responsible for the experimentally observed crossover in field
exponents of the non-linear dielectric response. Our arguments are given below.

The approach is based on the interface-roughening theory of randomly pinned interfaces
[34]. In the previous work [18], we developed this approach for PMN and showed that
it could successfully explain the large difference between the ac and dc non-linear effects.
The idea of this approach is as follows.

According to the ‘breathing’ model [18, 20], the ergodic phase of PMN [35] is treated
as a system of polar regions embedded in a non-polar matrix. They are elongated along the
direction of the local spontaneous polarization,Ps , the shape of which minimizes the effect
of the depolarizing field. Polar regions have a fixed orientation in the crystal, along one
of eight 〈111〉 pseudocubic directions allowed by the rhombohedral symmetry of the polar
phase [5]. The orientation does not change under the thermal agitation. The polar region
pattern is determined by the spatial distribution of the pinning centres (as has been pointed
out in reference [13], the internal random fields induced by the charge disorder can act as a
source of pinning centres in PMN). Following the interface-roughening arguments [34], due
to the random distribution of the pinning centres, the interphase boundary between a polar
region and the non-polar matrix will not stay flat. Instead, it will become ‘rough’ with a
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Figure 9. A schematic drawing of a polar region elongated along the direction of the local
spontaneous polarization,Ps . 3 is the length of the polar region, andLc is the scale on which
the boundary of the polar region is effectively free. Application of an external electric field,
E, produces a bending of the boundary on the scaleLc, and that gives the major contribution
1pE (equation (8)) to the dielectric response of the material. For the single polar region,1pE
depends also upon the angleα between the directions ofPs andE.

characteristic length scaleLc, which is determined by the spatial distribution of the pinning
centres and elastic properties of the interphase boundary. In other words, ifLc is smaller
than the length3 of the polar region (figure 9), the boundary will not be able to move as a
whole. The motion of the boundary will be determined by the motion of the ‘free’ pieces,
of lengthLc, each of them behaving as an elastic ‘drum head’.

Now, the application of an external fieldE will exert pressure(E ·Ps) on the interphase
boundary. The bending of the ‘free’ piece, of lengthLc, under the pressure will change
the volume of the polar region (figure 9), and, therefore, also its dipole moment. Along
the lines of reference [34], one can easily show [18, 20] that, for a small electric field, the
dipole moment1pE induced in the direction of the field due to the bending of the interphase
boundary of a single polar region can be written as [36]

1pE ∝ ESP
2
s

0
(cos2 α)L2

c (8)

where0 is the surface tension of the interphase boundary,S is the area of the boundary,
andα is the angle between the direction ofPs andE (figure 9). The total polarization,P ,
induced in the crystal will be equal to the average of the values of1pE for the individual
polar regions:

P = V −1
cr

∑
i

1pE,i

whereVcr is the volume of the crystal.
Let us show now that in this model there is room for a temperature crossover in the

dynamics of the interphase boundary motion which is accompanied by the disappearance
of the frequency dispersion of the small-signal dielectric permittivity.

First, consider the origin of the frequency dispersion of the dielectric response within this
model. According to reference [34], the bending of the interphase boundary is characterized
by the relaxation timeτ , which has the meaning of the time required to bend the piece of
the boundary on the scaleLc. The longer the piece, the longer the relaxation time. Also, it
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is assumed that, due to the randomness, bothLc andτ are characterized by the distribution
functions. This will lead to the frequency dispersion of the induced polarization,P . The
frequencyω of the applied ac field sets a characteristic time for measuringP equal toω−1.
If one waits a longer time, the larger pieces, of lengthLc, of the interphase boundaries can
bend. Therefore, both1pE andP will increase with decreasing frequency of the ac field.
The quasi-static limit is realized if the measurement time,ω−1, becomes so long that for all
of the polar regionsLc → 3 (where3 is the size of the region itself; see figure 9). In this
case, the polarization will not change ifω is reduced again, since3 stopsLc from growing
further. To calculate the dielectric response of the interphase boundary of a polar region in
the quasi-static regime, in equation (8) one should, thus, substitute3 for Lc (but noting the
reservation of reference [36]).

Likewise, if one fixes the measurement frequency and reduces the temperature starting
from the quasi-static regime, the length scaleLc will change because it is temperature
dependent (according to reference [34],Lc decreases with decreasing temperature). At a
certain temperature, one will have a drop in1pE andP (and inε′l too), because, for some
polar regions,Lc will become smaller than3 at a givenω, leading to a decrease in their
contribution to the dielectric response. Note that the temperature dependence of3 may also
contribute to this phenomenon. Thus, there will be a frequency-dependent drop inε′l(T ),
which is typically observed in relaxors; see, e.g., figure 1(c).

Let us consider now the response of the interphase boundaries to the ac field in the
non-linear regime. Here one should note that the exact theoretical predictions (like those in
reference [34] for the linear response) are still lacking. Nevertheless, in the regime of small
non-linearity we still can try to use equation (8) in order to evaluate the trend. This can be
done if we consider the lengthLc of ‘free’ pieces to be dependent not only onω andT , but
also the ac-field amplitude,Em. On the basis of the above picture for the linear response,
one can expect the non-linear response to be qualitatively different in the quasi-static and
frequency-dispersive cases.

In the regime with the frequency dispersion, the increase in the lengthLc can be
achieved either by decreasingω or by increasingEm. The reason for this is essentially the
same: a depinning of the interphase boundaries by the applied field [14]. However, the
situation is different in the absence of frequency dispersion. Here there is no possibility for
a ‘further’ depinning of the interphase boundary, because on the scale3 the boundary is
assumed to be already ‘free’. The non-linear effect will now be related to a growth of3

itself. Even though the growth of the polar regions is also related to the motion of their
interphase boundaries, the dynamics of the boundaries is quite different from that in the
frequency-dispersive case. WhenLc < 3, the motion of the interphase boundary on scale
Lc is essentially a motion at the bottom of a single potential well of the random pinning
potential [34], whereas forLc > 3, it is an over-barrier motion. This is because now the
size3 of the moving interface becomes smaller than the scale on which the interface would
be free if it were not restricted by the size of the polar region. We believe that these two
cases can correspond to different types of field dependence of the non-linear response of
PMN, Pnl(E).

To summarize, within this picture, the observed crossover in the field dependence ofPnl
can be related to the following regimes of the dynamics of the interphase boundary motion.

(i) At low temperatures, for which the field exponentγ is close to its classical value
of 3, the dielectric response is controlled by the field-induced vibration of the polar region
boundaries on a scale smaller than the size of the regions.

(ii) At high temperatures, in the quasi-static regime, for which the field exponentγ is
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close to 2, the dielectric response is controlled by the field-induced breathing of the polar
region as a whole.

(iii) A temperature crossover between the cases (i) and (ii) takes place when the maximal
size of the polar regions becomes comparable with the scale on which the interface of the
polar region can be considered as ‘free’.

5. Conclusions

We have shown experimentally that the non-linear dielectric response of PMN relaxor
ferroelectric has the following features:

(1) it is a non-analytical function of the field, with the absolute value of the non-linear
component of the polarization given by|Pnl| ∝ Eγ(ω,T )m ;

(2) the dependence on the temperature,T , and frequency,ω, of the exponentγ manifests
itself in the form of a crossover inγ (T ) from 2 to 3 upon cooling, whose position depends
upon the frequency of the applied ac field;

(3) the crossover begins (i.e.γ starts growing from the value 2) simultaneously with
the onset of the frequency dispersion of the dielectric response, and ends (i.e.,γ becomes
approximately equal to the value 3) when the spectrum of relaxation times in PMN becomes
flat.

We indicated that the non-analytical behaviour of PMN is different from that of the Rayleigh
dynamics [22, 30, 31], and thus requires another approach. We showed that this approach
could be developed within the framework of the interface-roughening theory of randomly
pinned interfaces [34], and demonstrated that it could explain the origin of the crossover
in γ (ω, T ) and its relationship to the frequency dispersion in PMN. Certain—important—
details of the observed behaviour remain unexplained—namely, the exact forms of the field
dependence ofPnl in the quasi-static (γ = 2) and frequency-dispersive (γ ≈ 3) regimes.
These details require a thorough theoretical investigation.
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Appendix. The non-linear response due to the surface layer

As was indicated in section 3, a possible origin of the quadratic field dependence of the
non-linear component of the polarization of PMN, which was observed at high temperatures,
could be the surface of the sample. That is, there exists a near-surface layer in the sample,
which contributes a component to the total induced polarization, which changes quadratically
with the applied field, whereas the properties of the bulk of the sample are described by the
‘normal’ cubic field dependence, which is determined by the macroscopic cubic symmetry
of PMN. Thus, the fact that at high temperatures the experimentally measured polarization
changed as|Pnl| ∝ E2

m could be explained by the fact that, at such temperatures, the
properties of the surface determined the total non-linear dielectric response of the sample.
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Figure A1. On the left: the double-layer structure, with one layer (‘r ’) which represents the
properties of the bulk material, and the other (‘n’) which represents the properties of the surface
of the sample. On the right: an equivalent circuit consisting of two capacitors connected in
series, which corresponds to the double-layer structure.

In order to investigate the effect of the surface, let us replace the sample with a double-
layer structure (see figure A1) in which one layer, ‘r ’, represents the bulk properties of the
material, and the second layer, ‘n’, represents the surface of the sample. The behaviour
of the double-layer structure can be described using an equivalent circuit consisting of two
capacitors connected in series (figure A1), Cr and C̃n, which correspond to the layers ‘r ’
and ‘n’, respectively. The non-linear properties of the surface are taken into account by the
fact that the capacitance ofC̃n depends upon the applied voltageUn (figure A1), whereas
the bulk of the material gives only a linear contribution to the dielectric response; thus Cr

is a linear capacitor. The behaviour of the equivalent circuit is described by the following
equations:

Qr = CrUr (A1)

Qn = C̃n(Un)Un = CnUn ± ψU2
n (A2)

Qr = Qn (A3)

U = Ur + Un (A4)

where Ur and U are the voltages applied to the layer ‘r ’ and to the entire sample,
respectively, andQn and Qr are the charges of the two capacitors. In equation (A2),
‘+’ corresponds toUn > 0 and ‘−’ corresponds toUn < 0, andψ is a constant. Thus,
the response of the surface is modelled usingQn(Un), which is a quadratic function of
the applied voltage, centrosymmetrical with respect to the pointUn = 0; Qn = 0, in
order to maintain the symmetry of the total dielectric response of the sample. The linear
capacitors in equation (A1) and equation (A2) have capacitances equal toCr = εrε0Ael/hr
and Cn = εnε0Ael/hn, where the thicknesses of the bulk and surface layers are related
by hr � hn. From equations (A1)–(A4), one can obtain the following equation for the
equivalent circuit:

Cr(U − Un) = CnUn + ψU2
n (A5)

where we limited ourselves to the case in whichUn > 0.
The response of the sample to the applied voltageU can be found by solving

equation (A5) to findUn(U), and by substituting this solution into equation (A2) forQn.
The solution of the quadratic equation, equation (A5), corresponding to the positive values
of Un, is equal to

Un =
√
b2+ 4ψUCr − b

2ψ
≈ UCr

Cr + Cn

[
1− ψUCr

(Cr + Cn)2
]

(A6)
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whereb = Cr+Cn, and in the last step we performed a series expansion ofUn with respect
to smallU leaving only the first non-linear term in the brackets. After the substitution of
Un into equation (A2) and rearrangement of the coefficients, one can obtain (again, for the
positive branch ofQn(U))

Qn = U CrCn

Cr + Cn + ψU
2 C3

r

(Cr + Cn)3 . (A7)

The first term on the right-hand side is the linear component of the charge induced on
the electrodes of the sample. SinceCr � Cn, due to the difference in the thicknesseshr
andhn, this term is equal toCrU , which means that the linear dielectric response of the
sample is totally determined by the properties of the bulk material. For the non-linear term,
Qnl
n ∝ U2, from equation (A7) we can obtain

Qnl
n ≈ ψU2

(
Cr

Cn

)3

= ψE2h2
s

(
εr

hr

hn

εn

)3

(A8)

where in the first step we neglectedCr compared toCn in the denominator, and in the last
step we substituted inCr , Cn, andU = Ehs (whereE is the field applied to the sample,
andhs is the sample thickness, equal tohs = hr+hn). Taking into account the fact that due
to the small thickness of the near-electrode layer,hs ≈ hr , and that the induced polarization
is related to the charge asP = Qn/Ael , we can obtain the final expression

Pnl = ψ

Ael

[
εr

εn
hn

]3
E2

hs
(A9)

which describes the dependence of the non-linear component of the polarization on the
sample thickness,hs .
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